

Program Description	Program Degree	Student Learning Outcomes		
APPLIED MATHEMATICS	BS	1: After completing this program, students should be able to make effective		
		use of the concepts of calculus and linear algebra and to carry out efficiently		
		algebraic and analytic computations.		
		2: After completing this program, students should be able to carry out		
		rigorous arguments in the context of real and complex analysis, abstract		
		algebra, and probability.		
		3: After completing this program, students should be able to communicate		
		effectively mathematical ideas using oral, written, and/or electronic media.		
		4: After completing this program, students should be able to use		
		technological tools that are useful in mathematical research.		
		5: After completing this program, students should be able to approach a		
		mathematical problem from a variety of perspectives.		
		6: After completing this program, students should have developed		
		mathematical independence and have experienced open-ended inquiry.		
		7: After completing this program, students should be able to make effective		
		use of numerical computations.		
		8: After completing this program, students should be able to model real-life		
		phenomena and analyze real-life data.		
BIOCHEMISTRY	BS	Students need to know foundational and in-depth material in the field of		
		biochemistry. This outcome is a result of the coursework necessary to learn		
		biochemistry.		
		Students need to be able to read the scientific literature in order to become		
		professionals in science related fields such as biochemistry. Students who		
		become biochemists will need to have some ability to write scientific articles.		
		We must have students learn safety skills. This is an essential part of the		
		education process.		
		This expectation is essential for a student who plans to be a biochemist.		
		There are many students who obtain a biochemistry degree as a step toward		
		a health profession goal (pre-med, pre-dent, pre-pharm). It is obvious that		
		these students do not need the same level of research training. Not all		
		biochemistry majors are going to become biochemists. Those who do		
		become biochemists need to know how to develop and explore a research		
		problem.		
		Students need to be able to work as part of a team. We are able to assess		
		their independent work in the foundational coursework (and lab work), but		
		the ability to do team work in the lab is most important in our upper level		
		labs. The outcome is essential for industrial positions in the biochemistry		
		field.		
		Students who graduate with a degree in biochemistry need to have learned		
		certain skills that allow them to relate chemical principles to biological		
		systems. They do not have to show mastery of the lab skills. Not all		
		biochemists work in labs. But they will need to know the equipment and		
		techniques (ELISA, Southern Blots, PCR, etc.) that are used in the		
		biochemistry field. They need to have a solid chemistry background and they		
		must have essential biochemistry exposure.		

Program Description	Program Degree	Student Learning Outcomes		
BIOCHEMISTRY (CONT'D)	BS (CONT'D)	Students who earn a biochemistry degree must have developed problem-		
		solving skills. This is central to all science degrees and a necessary skill set for		
		all science-related professions. It is a component of all critical thinking		
		centered courses.		
BIOINFORMATICS	GRAD	SLO1 1. Knowledge of the fundamental principles of inheritance and of		
		evolution		
		SLO 2. Knowledge of genome architectureand the processes of gene		
		expression and of the regulation of gene expression		
		SLO 3. Understanding of advanced concepts used in modern genomic		
		research and of how to represent those concepts computationally		
		SLO 4. Knowledge of protein structures and the relationship between		
		sequence and structure		
		SLO 5. Knowledge of molecular modeling and advanced concepts used in		
		structural bioinformatics		
		SLO 6. Knowledge of the developing interface between genomic and		
		structural bioinformatics		
		SLO 7. Knowledge of algorithms and software tools from computer and		
		information science used in bioinformatics		
BIOINFORMATICS	PHD	Students will be trained to analytically solve complex problems via a		
		bioinformatics framework.		
		Students will be trained to communicate their work across various platforms.		
		Students will be trained to think quantitatively about the data they analyse.		
BIOINFORMATICS	PSM	1. Knowledge of the fundamental principles of inheritance and of evolution		
		2. Knowledge of the details of genome architecture and the processes of		
		gene expression and of the regulation of gene expression		
		3. Understanding of advanced concepts used in modern genomic research		
		and of how to represent those concepts computationally		
		4. Knowledge of protein structures and the relationship between sequence		
		and structure		
		5. Knowledge of molecular modeling and advanced concepts used in		
		structural bioinformatics		
		6. Knowledge of the developing interface between genomic and structural		
		bioinformatics		
		7. Knowledge of algorithms and software tools from computer and		
		information science used in bioinformatics		
BIOINNOVATION	GRAD	Knowledge of principles of current concepts, techniques, trends in biological		
		and biomedical research.		
		Understanding of translational value and applicability of different current biodiscoveries.		
		Knowledge of principles in technology transfer and intellectual property		
		Induction of notional state and local policies protocols and standards		
		evnected in the field		
		Development of professional skills for and written communication of		
		biodiscoveries to expert and law public through traditional and new modia		
		Analyzing and evaluating scientific communications and proposals.		

Program Description	Program Degree	Student Learning Outcomes		
BIOINNOVATION (CONT'D)	GRAD (CONT'D)	Development of teamwork skills, including matrix collaborations.		
BIOINNOVATION	PSM	1. Knowledge of principles of current concepts, techniques, and trends in		
		biological and biomedical research.		
		2. Understanding of translational value and applicability of different current		
		biodiscoveries.		
		3. Understanding of national, state and local policies, protocols and		
		standards expected in the field.		
		4. Development of professional skills for oral and written communication of		
		A polyzing and evaluating scientific communications and proposals		
		E Development of teamwork skills, including matrix collaborations		
		5. Development of teamwork skins, including matrix conaborations.		
		6. Knowledge of principles in technology transfer and intellectual property		
BIOLOGY	PA	1. Thereughly understand of the principal loyels of organization of living		
BIOLOGI	DA	organisms		
		2 Understand the biochemical and biophysical principles that underlie living		
		organisms		
		3. comprehend principles that govern interaction between and within cells.		
		tissues and organisms		
		4. understand major principals of the discipline, such as proliferation,		
		generation of diversity, evolution by natural selection		
		5. communicate using oral, written, or electronic media, and understand		
		attribution and acknowledgement of sources		
BIOLOGY	BS	1. Thoroughly understand of the principal levels of organization of living		
		organisms		
		2. Understand the biochemical and biophysical principles that underlie living		
		organisms		
		3. comprehend principles that govern interaction between and within cells,		
		tissues and organisms		
		4. understand major principals of the discipline, such as proliferation,		
		generation of diversity, evolution by natural selection		
		5. critically evaluate experimental data and be familiar with laboratory		
		procedures		
		attribution and acknowledgement of sources		
BIOLOGY	ΜΔ	Advanced knowledge in one or more fields of biology		
		Effective communication at a professional level using and written or		
		electronic modia		
		Proficiency in searching, analyzing and interpreting primary scientific		
		literature		
BIOLOGY	MS	1: Critically evaluate experimental data		
2: Communicate at a professional level using and w		2: Communicate at a professional lovel using anal written or electronic		
		2. communicate at a professional level using oral, written, or electronic		
		3: Design carry out and assess experiments independently		
		4. Design, carry out, and assess experiments independently.		
BIOLOGY	עוואן	1: Design, carry out, and assess experiments independently		

Program Description	Program Degree	Student Learning Outcomes		
BIOLOGY (CONT'D)	PHD (CONT'D)	2: Communicate at a professional level using oral, written, or electronic		
		media		
		3: Critically evaluate experimental data		
		4: Teach various areas of biology		
BIOLOGY WITH TEACHING	BS	1: Thoroughly understanding of the principal levels of organization of living		
		organisms.		
		2: Students will be able to understand the core competencies relative to		
		molecular and cellular biology and the chemical basis of life, to include: 1.		
		atoms, molecules and chemical bonds 2. biologically important molecules 3.		
		Cellular bloenergetics, photosynthesis and respiration		
		5. Comprehend principles that govern interaction between and within cens,		
		4: Understand major principals of the discipline, including proliferation.		
		generation of diversity, and evolution by natural selection.		
		5: Students can design experiments, are familiar with laboratory procedures,		
		use probes and computers to gather and analyze data, to answer scientific		
		questions, reduce systematic and random errors, and use statistics to		
		interpret the results and deal with sampling errors.		
		6: The initial course in the TUteach major sequence, each student will have		
		developed and implemented four (4) STEM lessons in local k-8 classrooms		
		(SEP 1/2) and 3 consecutive SEEVI lessons in a local 7-12		
		by the assistance of the school (Mentor) teacher and SCTC 1389 course		
		Instructor. The learning outcomes of the latter course (MGSE 2189-		
		Classroom Interactions) is also supported by TUteach Faculty Advising.		
		Students will ultimately illustrate proficiency with the completion of courses		
		that reflect successful matriculation of major and foundational General		
		Education requirements, and attain TUteach Candidacy.		
		7: By the end of the semester, each TUteach major will have developed and		
		implemented a full-time semester of discipline-specific lessons in a local 7-12		
		classroom with the assistance of a mentor teacher and the course instructor.		
		Upon completion of the culminating Apprentice Teaching field experience,		
		students will be able to demonstrate mastery of STEM content in the		
		discipline, proficiency with the independent development of curriculum and		
		the delivery of content in a (5E Model) pedagogical sequence. Successful		
		completion of the Apprentice Teaching and Seminar experience (or		
		equivalency) is the final requirement for degree completion.		
		8: Communicate using oral, written, or electronic media, and understand		
		attribution and acknowledgement of sources Students will be able to		
		understand and articulate Biology content via various communicable		
		sources: The learning outcomes will be delivered via oral, written and		
		reconnological platforms. The learning outcomes are further attained by the		
		learners		
BIOLOGY/NEUROSCIENCE	PHD	See Biology Ph.D.		

Program Description	Program Degree	Student Learning Outcomes		
BIOPHYSICS	BS	1: understand fundamental principles of physics and their ability to apply		
		these principles for understanding how biological systems work		
		2: understand fundamental principles of chemistry and their ability to apply		
		these principles for understanding how biological systems work		
		3: understand fundamental principles of molecular biology and their ability to		
		apply these principles for understanding how biological systems work		
		4: use mathematical methods to study physical models methods include		
		single and multivariate calculus, coordinate systems (vector algebra and		
		vector differential operators, Fourier series, ordinary and partial differential		
		equations, boundary value problems, matrices and determinants, and		
		functions of complex variables		
		5: have written communication skills that enable students to explain their		
		work to other people in the field.		
BIOTECHNOLOGY	GRAD	Introduction to new and emerging innovation in the Biotech sector		
		Train in Applied Ethics so that as future leaders candidates will use a broadly		
		accepted ethical framework to assess dilemmas and will do so with highest		
		level of integrity.		
		Candidates will be trained in written and oral presentation of scientific work.		
		Candidates will be trained in documenting observations and anlayzing results		
		obtained in the laboratory. Students will also use scientific publicaitons to		
		develop critical thinking.		
		As future leaders student will be given opportunities to particpiate in		
		professional development. Working as a team students will initiate and		
		organize seminars and meetings with external advisors. Students will seek		
		mentoring opprtunities with leaders in the field.		
		To be real-world ready opportunies will be made so students can leverage		
		the powerful impact of teamwork.		
BIOTECHNOLOGY	PSM	1: Knowledge of fundamental principles used to address as well as state of		
		the art methods and technologies to solve problems in biotechnology		
		2: An understanding of ethical standards of integrity, honesty and fairness		
		within the profession		
		3: Professional communication skills for oral and written presentations		
		4: Proficiency in collecting, analyzing, documenting and validating data		
		5: Leadership abilities to contribute effectively within the profession (e.g.,		
		lead lab teams, make development and planning decisions, lead in		
		management and marketing decisions)		
		6: Develop teamwork skills		
CHEMISTRY	ВА	Students who earn a BA Chemistry degree must know foundational material		
		in the field of chemistry. This comes as a result of successfully completing the		
		coursework necessary to learn chemistry.		
		Students who graduate with a BA degree in chemistry will have laboratory		
		skills in a 4 of the 5 subdivisions (analytical, biochemical, inorganic, physical,		
		and organic chemistry) of chemistry. These lab skills will be a result of taking		
		challenging upper level lab courses.		

Program Description	Program Degree	Student Learning Outcomes			
CHEMISTRY (CONT'D)	BA (CONT'D)	Students who earn a chemistry degree must have developed problem-solving skills. This is central to all science degrees and a necessary skill set for all science related professions. It is a component of all critical thinking centered courses. Problem-solving skills include (but are not limited to) the ability to use data analysis in order to make logical conclusions concerning chemical reactivity and/or chemical properties. Students who graduate with a BA degree in chemistry will be able to access chemical literature using library resources and online platforms. We must have students learn safety skills in chemistry laboratory settings. This is an essential part of the education process. Students need to be able to work as part of a team. We are able to assess their independent work in the foundational coursework (and lab work), but the ability to do team work in the lab is most important in our upper level labs. The outcome is essential for industrial positions in the chemistry field.			
CHEMISTRY	BS	Students who earn a BS in chemistry must know foundational and in-depth material in the field of chemistry. This knowledge is gained from the coursework necessary to for the chemistry degree. Students who graduate with a BS degree in chemistry need to have learned laboratory skills that allow them to analyze and predict chemical principles. They might not need to use these skills in their future positions, but they must understand the fundamentals of chemical analysis when applied to organic, inorganic, physical, and biochemical problems. But they will need to know the equipment and techniques (IR, NMR, UV, etc.) that are used in the chemistry field. They need to have a solid chemistry background and they must have exposure to each of the areas of chemistry.			
		Students who earn a chemistry degree must have developed problem-solving skills. This is central to all science degrees and a necessary skill set for all science-related professions. It is a component of all critical thinking centered courses. They need to have the ability to: (i) think critically on their own, (ii) design and execute experiments, (iii) perform data analysis, and (iv) develop testable hypotheses. Students need to be able to read the scientific literature in order to become professionals in the fields of chemistry. Students who become chemists will need to have the ability to read scientific articles and write scientific reports. We must have students learn safety skills. This is an essential part of the education process. This expectation is essential for a student who plans to be a chemist. There are many students who obtain a chemistry degree as a step toward a health profession goal (pre-med, pre-dent, pre-pharm). It is obvious that these students do not need the same level of research training. Not all chemistry majors are going to become chemists. Those who do become chemists need to know how to develop and explore a research problem in order to be			
		prepared for a career in chemistry or a chemistry-related area.			

Program Description	Program Degree	Student Learning Outcomes		
CHEMISTRY (CONT'D)	BS (CONT'D)	Students need to be able to work as part of a team. We are able to assess their independent work in the foundational coursework (and lab work), but the ability to do team work in the lab is most important in our upper level labs. The outcome is essential for industrial positions in the chemistry field.		
CHEMISTRY	MA	 Know the basic principles of his/her chosen subdiscipline (i.e. Organic, Physical, Biochemical, Inorganic and Analytical Chemistry) Demonstrate the ability to conduct independent research in that area Have the ability to communicate the results of their research through the preparation of articles for publication in one of the many peer-reviewed journals devoted to their subdiscipline Know the basic principles of their shoren subdiscipline (i.e. Organic, 		
CHEMISTRY	MS	 Know the basic principles of their chosen subdiscipline (i.e. Organic, Physical, Biochemical, Inorganic and Analytical Chemistry) Demonstrate the ability to conduct independent research in that area Have the ability to communicate the results of their research through the preparation/writing of articles for publication in one of the many peer- reviewed journals devoted to their subdiscipline 		
CHEMISTRY	PHD	 Know the basic principles of their chosen subdiscipline (i.e. Organic, Physical, Biochemical, Inorganic and Analytical Chemistry) Demonstrate the ability to conduct independent research in that area Have the ability to communicate the results of their research orally and through the preparation/writing of articles for publication in one of the many peer-reviewed journals devoted to their subdiscipline 		
CHEMISTRY WITH TEACHING	BS	The initial course in the TUteach major sequence, each student will have developed and implemented four (4) STEM lessons in local k-8 classrooms (STEP 1/2) and 3 consecutive STEM lessons in a local 7-12 classroom(Classroom Interactions). The learning outcomes will be supported by the assistance of the school (Mentor) teacher and SCTC 1389 course Instructor. The learning outcomes of the latter course ((MGSE 2189- Classroom Interactions) is also supported by TUteach Faculty Advising. Students will ultimately illustrate proficiency with the completion of courses that reflect successful matriculation of major and foundational General Education requirements, and attain TUteach Candidacy. By the end of the semester, each TUteach major will have developed and implemented a full-time semester of discipline-specific lessons in a local 7-12 classroom with the assistance of a mentor teacher and the course instructor.		
		students will be able to demonstrate mastery of STEM content in the discipline, proficiency with the independent development of curriculum and the delivery of content in a (5E Model) pedagogical sequence. Successful completion of the Apprentice Teaching and Seminar experience (or equivalency) is the final requirement for degree completion.		

Aca	demi	ic Prog	gram S	Stude	nt Le	earni	ing (Dutco	omes	

Program Description	Program Degree	Student Learning Outcomes		
CHEMISTRY WITH	BS (CONT'D)	Students will be able to access chemical literature using library resources and		
TEACHING (CONT'D)		online platforms. Students will be able to grasp core competencies and		
		Chemical Concepts, to include: chemical formulas and nomenclature,		
		chemical reactions and stoichiometry, mixtures, solutions solubility and		
		chemical equilibrium.		
		Have laboratory skills in a broad range of subdivisions through laboratory		
		experience in 4 of 5 chemistry subdivisions. The student learning outcomes		
		will incorporate extensive laboratory activities, to include: reinforcement or		
		extension of chemical theory, experimental design, data collection, analysis		
		and interpretation; methods of preparation, use, storage and disposal of		
		reagents conforming to state and federal regulations; laboratory safety.		
		Know material from foundational and in-depth course work in 4 out of 5		
		subdivisions of chemistry: Analytical Chemistry, Biochemistry, Inorganic		
		Chemistry, Organic Chemistry, Physical Chemistry. Students will be able to		
		grasp and understand the breadth of each foundational subdivision, namely:		
		Applications of Chemistry (life sciences and earth sciences); Atomic Theory		
		(atomic structure and nuclear chemistry; electronic configuration and		
		periodicity; chemical bonding and molecular structure. Inorganic chemistry,		
		to include: descriptive chemistry of metallic and non-metallic elements and		
		their industrial importance; valence bond and molecular orbital theories;		
		group theory and crystal systems; chemistry of inorganic complexes; Organic		
		Chemistry: bonding and structure; nomenclature and stereochemistry;		
		reactions and mechanism; synthesis and spectroscopy; industrial chemistry		
		and material science; Physical Chemistry: Thermodynamics and kinetics of		
		chemical reactions, including- laws of thermodynamics; chemical equilibrium;		
		electrochemistry; chemical kinetics.		
		Students will be able to gain extensive laboratory skills, to include:		
		reinforcement or extension of chemical theory; experimental design, data		
		collection analysis and interpretation; methods of preparation, use, storage		
		and disposal of reagents conforming to state and federal regulations.		
		Students will be able to incorporate and apply problem-solving skills, to		
		include the ability to use data analysis in order to make logical conclusions		
		concerning chemical reactivity and/or properties.		
COMPUTATIONAL DATA	MS	Exhibit mastery of advanced data structures, algorithms and protocols used		
SCIENCE		in computing applications.		
		After completing this program, students should be able to model real-life		
		phenomena and analyze real-life data under time constraints and involving		
		big data.		
		Exhibit familiarity with specific area of CS (e.g. cloud computing, machine		
		learning, net- working and operating systems)		
		Snow the ability to apply theoretical and conceptual knowledge to address		
		LS related prob- lems and for mission critical applications.		
		Be able to do independent critical thinking, to identify pertinent research and		
		be able to identify the best possible tools or methods with multiple plans to		
	1	Jaccomplish the goals.		

Program Description	Program Degree	Student Learning Outcomes		
COMPUTATIONAL DATA	MS (CONT'D)	Be employable in data science related fields or able to further their education		
SCIENCE (CONT'D)		in professional school programs.		
COMPUTER &	PHD	Demonstrate the ability to conduct independent research.		
INFORMATION SCIENCE				
		Demonstrate knowledge of the basic principles of the computer science		
		discipline (e.g., Computer and Network Systems, Information Systems,		
		Software Systems).		
		Demonstrate the ability to communicate the results of research through		
		preparation of articles for publication in a peer reviewed venue.		
COMPUTER SCIENCE	ВА	Students will be proficient in at least one programming language and can		
		write, test, and debug software programs.		
		Students will be able to apply existing algorithms and/or design new		
		algorithms that are appropriate for solving a given problem.		
		Students will be able to apply knowledge of hardware and operating systems		
		in order to develop reliable and efficient systems.		
		Students will be able to apply mathematical concepts to solve problems in		
		the computing discipline.		
		Students will be able to communicate effectively about concepts within the		
		computing discipline.		
COMPUTER SCIENCE	BS	Students will be proficient in at least one programming language and can		
		write, test, and debug software programs		
		Students will be able to apply existing algorithms and/or design new		
		algorithms that are appropriate for solving a given problem.		
		Students will be able to apply knowledge of hardware and operating systems		
		in order to develop reliable and efficient systems.		
		Students will be able to apply mathematical concepts to solve problems in		
		the computing discipline.		
		Students will be able to communicate effectively about concepts within the		
		computing discipline.		
COMPUTER SCIENCE	GRAD	Refer to Computer Science MS		
COMPUTER SCIENCE	MS	Exhibit mastery of advanced data structures, algorithms and protocols used		
		in computing applications.		
		After completing this program, students should be able to model real-life		
		phenomena and analyze real-life arbitrarily large datasets under time		
		constraints and uncertain conditions.		
		Exhibit familiarity with specific area of CS (e.g. cloud computing, machine		
		learning, net- working and operating systems)		
		Show the ability to apply theoretical and conceptual knowledge to address		
		CS related prob- lems and for mission critical applications.		
		Be able to do independent critical thinking, to identify pertinent research and		
		be able to identify the best possible tools or methods with multiple plans to		
		accomplish the goals.		
		Be employable in CS related fields or able to further their education in		
		protessional school programs.		
	82	Students will be proficient in at least one programming language and can		
PHISICS		write, test, and debug software programs.		
		Students will be able to apply existing algorithms and/or design new		
		algorithms that are appropriate for solving a given problem.		

Program Description	Program Degree	Student Learning Outcomes		
COMPUTER SCIENCE AND	BS (CONT'D)	Understand fundamental principles of physics and apply these principles to		
PHYSICS (CONT'D)		problems in classical mechanics, electromagnetism, optics and wave		
		phenomena, thermodynamics and statistical mechanics, quantum		
		mechanics, atomic physics, special relativity, and specialized topics.		
		Students will be able to apply mathematical concepts to solve problems in		
		both the physics and computing disciplines.		
		Students will be able to communicate effectively about concepts within both		
		the physics and computer science disciplines.		
COMPUTER SECURITY AND	CERT	Certificate Program aligns with the Computer Science BS degree program.		
DIGITAL FORENSICS				
CYBER DEFENSE AND	PSM	Be knowledgeable of fundamental principals of cyber security		
INFORMATION				
ASSURANCE				
		Be able to recognize and employ in problem solving data structures and		
		algorithms used in computer science.		
		Be employable in IT related fields or able to further their education in		
		professional school programs.		
DATA SCIENCE	BS	Students will be proficient in at least one programming language and can		
		write, test, and debug software programs.		
		Students will be able to apply existing algorithms and/or design new		
		algorithms that are appropriate for solving a given problem.		
		After completing this program, students should be able to model real-life		
		phenomena and analyze real-life data under time constraints and involving		
		big data.		
		Students will be able to apply mathematical concepts to solve problems in		
		data science		
		Students will be able to communicate effectively about concepts within the		
		data science discipline.		
DATA SCIENCE:	CERT	Certificate Program aligns with the Data Science BS degree program.		
COMPUTATIONAL				
ANALYSIS				
EARTH AND SPACE	BS	Students will be able to acquire a strong foundational knowledge earth		
SCIENCE WITH TEACHING		science. As one of the core competencies in the discipline (earth science), the		
		concepts and learning goals are inclusive of the following: Physical Geology:		
		flow of water-hydrologic cycle; characteristics, origin and formation of		
		minerals and rocks; internal structure and processes of the earth;		
		Environment: natural resources and the social impact created by humans and		
		natural activities.		
		Students will be able to develop desired, communicable soft skills that are		
		employable in earth science-related fields and/or further their education in		
		graduate or professional school programs.		
		Students will be able to design experiments, use probes and computers to		
		gather and analyze data. Further, students will be able to answer scientific		
		questions, reduce systematic and random errors, and use statistics to		
		interpret the results and deal with sampling errors.		
		Students can find, read, review and report on articles in the scientific		
		literature. Students will further be able to convey information and literacy as		
		a learning goal via the effective use of technology/technology sources in a		
		virtual (online) platform.		

Academic I	Program Stu	dent Learn	ning Outcomes
------------	-------------	------------	---------------

Program Description	Program Degree	Student Learning Outcomes
EARTH AND SPACE SCIENCE WITH TEACHING (CONT'D)	BS (CONT'D)	Students will be able to apply and model math principles to explain scientific phenomena in a project-based learning environment
		Students will be able to present research results in oral and written form. The student learning goals are further evidenced by their ability to deliver written and oral presentations in an virtual, online environment. The initial course in the TUteach major sequence, each student will have developed and implemented four (4) STEM lessons in local k-8 classrooms (STEP 1/2) and 3 consecutive STEM lessons in a local 7-12 classroom(Classroom Interactions). The learning outcomes will be supported by the assistance of the school (Mentor) teacher and SCTC 1389 course Instructor. The learning outcomes of the latter course ((MGSE 2189-Classroom Interactions) is also supported by TUteach Faculty Advising. Students will ultimately illustrate proficiency with the completion of courses that reflect successful matriculation of major and foundational General Education requirements, and attain TUteach Candidacy.
		Upon completion of the culminating Apprentice Teaching field experience, students will be able to demonstrate mastery of STEM content in the discipline, proficiency with the development of curriculum and the delivery of content in a (5E Model) pedagogical sequence. Successful completion of the Apprentice Teaching and Seminar experience (or equivalency) is the final requirement for degree completion.
ENVIRONMENTAL PROFESSIONAL TRAINING	CERT	Certificate Program aligns with the Geology BS and Environmental Science BS degree programs.
ENVIRONMENTAL SCIENCE	BS	 Understand how humans impact and alter the natural environment. Be able to distinguish natural and human alteration of the environment. Develop both a disciplinary and interdisciplinary background to make decisions about environmental problems. Successfully complete both introductory and higher level coursework in multiple departments. Develop an understanding of specific environmental problems and field methods.
FORENSIC CHEMISTRY	PSM	Students will gain a theoretical understanding of major concepts in forensic chemistry.
FUNDAMENTALS OF PROGRAMMING	CERT	Certificate Program aligns with the Computer Science and Information Science & Technology BS degree programs.

College of Science and Technology Academic Program Student Learning Outcomes

Program Description	Program Degree	Student Learning Outcomes
GENERAL SCIENCE WITH TEACHING	BS	The initial course in the TUteach major sequence, each student will have developed and implemented four (4) STEM lessons in local k-8 classrooms (STEP 1/2) and 3 consecutive STEM lessons in a local 7-12 classroom(Classroom Interactions). The learning outcomes will be supported by the assistance of the school (Mentor) teacher and SCTC 1389 course Instructor. The learning outcomes of the latter course ((MGSE 2189- Classroom Interactions) is also supported by TUteach Faculty Advising. Students will ultimately illustrate proficiency with the completion of courses that reflect successful matriculation of major and foundational General Education requirements, and attain TUteach Candidacy.
		By the end of the semester, each TUteach major will have developed and implemented a full-time semester of discipline-specific lessons in a local 7-12 classroom with the assistance of a mentor teacher and the course instructor. Upon completion of the culminating Apprentice Teaching field experience, students will be able to demonstrate mastery of STEM content in the discipline, proficiency with the independent development of curriculum and the delivery of content in a (5E Model) pedagogical sequence. Successful completion of the Apprentice Teaching and Seminar experience (or equivalency) is the final requirement for degree completion.
		By the end of degree, the student learning outcomes will be attained through a rich, "General" breadth of knowledge across the sciences, to include sequenced coursework in Biology, Chemistry, Earth & Space Science and Physics. These incorporated learning outcomes are also illustrated though project-based learning and teaching pedagogy. Specifically, the student learning outcomes are outlined as follows: Biology: Life Science, including evolution and diversity of life, plants and animals; Chemistry: Physical Science, to include matter and energy, chemical periodicity and chemical reactions, solutions and solubility; Earth Science: Historical and physical geology, structure of the earth, oceanography, meteorology and astronomy; Physics: kinematics, dynamics, Kinetic Theory, heat, laws of thermodynamics, electricity, magnetism, optics, modern physics. * Reference the New Student Learning Outcome (2020-2021 Academic Year) students will be able to demonstrate effective use of technology/technology sources to grasp course concepts and learning goals in a virtual (online) platform. This student learning outcome (SLO) is exhibited across the curriculum.
GENOME MEDICINE	CERT	Refer to Biology BS
GENOMIC MEDICINE	BS	Thoroughly understand of the principal levels of organization of living organisms Understand the biochemical and biophysical principles that underlie living
		organisms and diseases Communicate using oral, written, or electronic media, and understand attribution and acknowledgement of sources
		Critically evaluate experimental data and be familiar with computational and laboratory procedures Understand the role of genomes and evolution in disease and medicine

Program Description	Program Degree	Student Learning Outcomes
GENOMIC MEDICINE	BS (CONT'D)	Understand major principals of the discipline, such as proliferation,
(CONT'D)		generation of diversity, evolution by natural selection
		Comprehend principles that govern interaction between and within cells,
		tissues, and organisms
		Learn about the interplay of genomics and medicine with informatics and
		evolution
GEOLOGY	ВА	1: Acquire a strong knowledge foundation in geology and related sciences
		2: Understand how to research the literature and formulate geologic
		hypotheses
		3: Apply theoretical, conceptual, and observational knowledge to the analysis
		of geologic data, and solve geologic problems
		4: Demonstrate competence in scientific inquiry, writing, and oral
		presentation
GEOLOGY	BS	1: Acquire a strong knowledge foundation in geology and related sciences
		2: Understand how to research the literature and formulate geologic
		hypotheses
		3: Apply theoretical, conceptual, and observational knowledge to the analysis
		of geologic data, and solve geologic problems
		4: Demonstrate competence in scientific inquiry, writing, and oral
		presentation
GEOLOGY	MS	Demonstrate functional proficiency in a broad range of geologic concepts.
		Geology is a very interdisciplinary science. We incorporate aspects of every
		science into our research, including biology, chemistry, computer science,
		mathematics, and physics. This blending of scientific disciplines gives rise to
		some of our common geological specialties, such as geochemistry,
		geophysics, paleontology, and planetary geology. As such, we require our
		students to have a basic understanding of fundamental geological concepts
		which crosscut our entire discipline.
		Acquire a strong knowledge foundation in the student's particular area of
		research. A consequence of any MS program in geology is that the student
		must narrow down their range of interests and focus on one particular
		research topic/problem during their time with us. In order to achieve this
		focus and develop their foundational knowledge, we tailor a selection of
		graduate-level classes that can be applied to the student's particular area of
		research. Foundational knowledge is deepened by direct mentorship by a
		research advisor and two additional faculty who provide incremental
		feedback on research and guide students to key resources and through skill
		development.
		Since our MS program requires the submission of an independent and
		original body of research for their thesis, graduate students must understand
		how to research the literature and formulate hypotheses for preparation of
		their thesis proposal.
		Be able to apply theoretical, conceptual, and observational knowledge to the
		analysis of geologic data, testing of hypotheses, and solution of geologic
		problems related to thesis research.
		Demonstrate competence in scientific inquiry, writing, and oral presentation
		of research.

College of Science and Technology Academic Program Student Learning Outcomes

Program Description	Program Degree	Student Learning Outcomes
GEOLOGY (CONT'D)	MS (CONT'D)	Be employable in earth science-related fields or able to further their
		education in Ph.D. or professional school programs.
GEOSCIENCE	PHD	Acquire a strong knowledge foundation in the student's particular area of
		research. In order to achieve this focus and develop their foundational
		knowledge, we tailor a selection of graduate-level classes that can be applied
		to the student's particular area of research. Foundational knowledge is
		deepened by direct mentorship by a research advisor and two additional
		faculty who provide incremental feedback on research and guide students to
		key resources and through skill development.
		Successful PhD graduates are able to identify the cutting edge of research in
		their chosen field, and anticipate the needs of industry, society, and the
		environment.
		Prepare a research proposal for innovative research.
		Be able to apply theoretical, conceptual, and observational knowledge to the
		analysis of geologic data, testing of hypotheses, and solution of geologic
		problems related to thesis research.
		Demonstrate competence in scientific inquiry, writing, and oral presentation
		of research.
		Be employable in Earth science-related fields.
HIGH-PERFORMANCE	PSM	Students acquire knowledge of architecture of high-performance computing
COMPUTING FOR		systems,
SCIENTIFIC APPLICATIONS		
		Students prove understanding of mathematical techniques employed in high-
		performance computing,
		Students acquire understanding of the software tools used in parallel
		calculations.
		Students acquire general understanding of computational methods used in
		the sciences and engineering
INFORMATION SCIENCE &	ВА	Students will be proficient in at least one programming language and can
TECHNOLOGY		write, test, and debug software programs.
		Students will be able to apply existing algorithms and/or design new
		algorithms that are appropriate for solving a given problem.
		Students will be able to apply knowledge of hardware and operating systems
		in order to develop reliable and efficient systems.
		Students will be able to communicate effectively about concepts within the
		computing discipline.
		Students will be able to effectively work as part of a team to design software
		systems
		Students will be able to acquire, model, organize, and present data
INFORMATION SCIENCE &	BS	Students will be proficient in at least one programming language and can
TECHNOLOGY		write, test, and debug software programs.
		Students will be able to apply existing algorithms and/or design new
		algorithms that are appropriate for solving a given problem.
		Students will be able to apply knowledge of hardware and operating systems
		in order to develop reliable and efficient systems.
		Students will be able to acquire, model, organize, and present data

Program Description	Program Degree	Student Learning Outcomes
INFORMATION SCIENCE &	BS (CONT'D)	Students will be able to communicate effectively about concepts within the
TECHNOLOGY (CONT'D)		computing discipline.
		Students will be able to effectively work as part of a team to design software
		systems
INFORMATION SCIENCE &	MS	SLO 1: Have depth of knowledge of Information Science and Technology
TECHNOLOGY		Principles. To provide an opportunity for students without a background in
		programming and/or computer science to gain an understanding of the core
		Information Science and Technology principles.
		SLO 2: Use, develop, design, and evaluate information technology products
		and services. Students will be able to use their knowledge of IS&T to apply
		(Practical thinking), and design new (creative thinking) IS&T products and
		services
		SLO 3: Organize and manage a team of technical and non-technical audiences
		developing information technology products. To provide students from a
		variety of backgrounds (including biology, chemistry, engineering, business,
		social sciences, and arts) with the opportunity to learn how to communicate
		with technical and non-technical audiences about information technology
		concepts and how to assume leadership roles.
		SLO 4: Evaluate, compare, and select from alternative and emerging
		information technologies. The students will have the opportunity to enhance
		their Practical Thinking and gain experience in evaluating emerging
		Information technologies.
		SLO 5: Pursue professional development to meet the demands of their new
		learn skills for computing focused jobs in software application development
		including web and mabile application development,
		quality assurance, database management, information security, and
		computer networking as well as jobs that are at the interface of discipline-
		specific knowledge and computing
INFORMATION SCIENCE	GRAD	Certificate Program aligns with the Information Science & Technology MS
AND TECHNOLOGY		degree program.
MATHEMATICAI	BA	After completing this program students should be able to make effective use
ECONOMICS		of the concepts of calculus and linear algebra and to carry out efficiently
		algebraic and analytic computations.
		After completing this program, students should be able to carry out rigorous
		arguments in the context of real and complex analysis, abstract algebra, and
		probability.
		After completing this program, students should be able to communicate
		effectively mathematical ideas using oral, written, and/or electronic media.
		After completing this program, students should be able to use technological
		tools that are useful in mathematical research.
		After completing this program, students should be able to approach a
		mathematical problem from a variety of perspectives.
		After completing this program, students should have developed
		mathematical independence and have experienced open-ended inquiry.

Program Description	Program Degree	Student Learning Outcomes
MATHEMATICS	ВА	After completing this program, students should be able to make effective use of the concepts of calculus and linear algebra and to carry out efficiently algebraic and analytic computations.
		After completing this program, students should be able to carry out rigorous arguments in the context of real and complex analysis, abstract algebra, and probability.
		After completing this program, students should be able to communicate effectively mathematical ideas using oral, written, and/or electronic media.
		After completing this program, students should be able to use technological tools that are useful in mathematical research.
		After completing this program, students should be able to approach a mathematical problem from a variety of perspectives.
		After completing this program, students should have developed mathematical independence and have experienced open-ended inquiry.
MATHEMATICS	BS	After completing this program, students should be able to make effective use of the concepts of calculus and linear algebra and to carry out efficiently algebraic and analytic computations.
		After completing this program, students should be able to carry out rigorous arguments in the context of real and complex analysis, abstract algebra, and probability.
		After completing this program, students should be able to communicate effectively mathematical ideas using oral, written, and/or electronic media.
		After completing this program, students should be able to use technological tools that are useful in mathematical research.
		After completing this program, students should be able to approach a mathematical problem from a variety of perspectives.
		After completing this program, students should have developed
MATHEMATICS	MS	mathematical independence and have experienced open-ended inquiry.1: Communicate advanced mathematical concepts orally and in written form.
		2: Understand and construct advanced rigorous mathematical arguments.
		3: Effectively search mathematical literature and appropriately credit existing results.
		4: Effectively process and evaluate both theoretical and real-life quantitative data.
		5: Apply mathematical principles in order to solve problems arising in
		natural phenomena for those in the applied fields)
MATHEMATICS	PHD	1: Communicate advanced mathematical concepts orally and in written form.
		2: Understand and construct advanced rigorous mathematical arguments
		3: Effectively search mathematical literature and appropriately credit existing results.
		4: Formulate a research problem as a mathematical conjecture and design a long-range strategy for attacking this.

Program Description	Program Degree	Student Learning Outcomes
MATHEMATICS (CONT'D)	PHD (CONT'D)	5: Apply mathematical principles in order to solve problems arising in
		applications (possibly including the design of numerical simulations to model
		natural phenomena for those in the applied fields).
		6: Conduct independent research.
		7: Develop mastery as an instructor at the collegiate level.
MATHEMATICS AND	BS	The initial course in the TUteach major sequence, each student will have
COMPUTER SCIENCE WITH		developed and implemented four (4) STEM lessons in local k-8 classrooms
TEACHING		(SLEP 1/2) and 3 consecutive SLEW lessons in a local 7-12
		by the assistance of the school (Mentor) teacher and SCTC 1389 course
		Instructor. The learning outcomes of the latter course ((MGSE 2189-
		Classroom Interactions) is also supported by TUteach Faculty Advising.
		Students will ultimately illustrate proficiency with the completion of courses
		that reflect successful matriculation of major and foundational General
		Education requirements, and attain TUteach Candidacy.
		By the end of the semester, each TUteach major will have developed and
		implemented a full-time semester of discipline-specific lessons in a local 7-12
		classroom with the assistance of a mentor teacher and the course instructor.
		Upon completion of the culminating Apprentice Teaching field experience,
		students will be able to demonstrate mastery of STEM content in the
		discipline, proficiency with the independent development of curriculum and
		the delivery of content in a (5E Model) pedagogical sequence. Successful
		completion of the Apprentice Teaching and Seminar experience (or
		equivalency) is the final requirement for degree completion.
		After completing this program, students should be able to make effective use
		of the concepts of calculus and linear algebra and to carry out efficiently
		algebraic and analytic computations. Student learning outcomes are further
		evidenced by understanding and assessment of these concepts in a virtual
		(online) environment.
		Students will be able to carry out rigorous arguments in the context of real
		and complex analysis, abstract algebra, and probability. Student learning
		of these concepts and learning goals in a virtual (online) environment.
		Upon completion of the program, students will be be able to effectively
		communicate mathematical ideas using oral, written, and/or electronic
		media. The student learning outcomes are further evidenced by
		understanding and successful assessment of these concepts and learning
		Budis.
		tools that are useful in mathematical research. The effective use of
		technology is further evidenced by each student's ability to satisfy learning
		goals in an virtual, online environment.

Program Description	Program Degree	Student Learning Outcomes
MATHEMATICS AND	BS (CONT'D)	Upon completion of the program, students will be able to think critically and
COMPUTER SCIENCE WITH		apply multiple approaches to solving problems. The student learning
TEACHING (CONT'D)		outcomes are further evidenced by the successful assessment of this learning
		goal.
		Upon completion of this program, students will illustrate mathematical
		independence and have use open-ended inquiry to solve problems.
MATHEMATICS AND	BS	The initial course in the TUteach major sequence, each student will have
TECHNOLOGY WITH		developed and implemented four (4) STEM lessons in local k-8 classrooms
TEACHING		(STEP 1/2) and 3 consecutive STEM lessons in a local 7-12
		classroom(Classroom Interactions). The learning outcomes will be supported
		by the assistance of the school (Mentor) teacher and SCTC 1389 course
		Instructor. The learning outcomes of the latter course ((MGSE 2189-
		Classroom Interactions) is also supported by TUteach Faculty Advising.
		Students will ultimately illustrate proficiency with the completion of courses
		that reflect successful matriculation of major and foundational General
		Education requirements, and attain TUteach Candidacy.
		By the end of the semester, each TUteach major will have developed and
		implemented a full-time semester of discipline-specific lessons in a local 7-12
		classroom with the assistance of a mentor teacher and the course instructor.
		Upon completion of the culminating Apprentice Teaching field experience.
		students will be able to demonstrate mastery of STEM content in the
		discipline, proficiency with the independent development of curriculum and
		the delivery of content in a (5E Model) pedagogical sequence. Successful
		completion of the Apprentice Teaching and Seminar experience (or
		equivalency) is the final requirement for degree completion.
		After completing this program, students should be able to make effective use
		of the concepts of calculus and linear algebra and to carry out efficiently
		algebraic and analytic computations. Student learning outcomes are further
		evidenced by understanding and assessment of these concepts in a virtual
		(online) environment.
		Students will be able to carry out rigorous arguments in the context of real
		and complex analysis, abstract algebra, and probability. Student learning
		outcomes are further evidenced by understanding and successful assessment
		of these concepts and learning goals in a virtual (online) environment.
		Upon completion of the program, students will be be able to effectively
		communicate mathematical ideas using oral, written, and/or electronic
		media. The student learning outcomes are further evidenced by
		understanding and successful assessment of these concepts and learning
		goals.
		After completing this program, students should be able to use technological
		tools that are useful in mathematical research. The effective use of
		technology is further evidenced by each student's ability to satisfy learning
		goals in an virtual, online environment.

Program Description	Program Degree	Student Learning Outcomes
MATHEMATICS AND	BS (CONT'D)	Upon completion of the program, students will be able to think critically and
TECHNOLOGY WITH		apply multiple approaches to solving problems. The student learning
TEACHING (CONT'D)		outcomes are further evidenced by the successful assessment of this learning
		goal.
		Upon completion of this program, students will illustrate mathematical
		independence and have use open-ended inquiry to solve problems.
MATHEMATICS WITH	BS	The initial course in the TUteach major sequence, each student will have
TEACHING		developed and implemented four (4) STEM lessons in local k-8 classrooms
		(STEP 1/2) and 3 consecutive STEM lessons in a local 7-12
		classroom(Classroom Interactions). The learning outcomes will be supported
		by the assistance of the school (Mentor) teacher and SCTC 1389 course
		Instructor. The learning outcomes of the latter course ((MGSE 2189-
		Classroom Interactions) is also supported by TUteach Faculty Advising.
		Students will ultimately illustrate proficiency with the completion of courses
		that reflect successful matriculation of major and foundational General
		Education requirements, and attain TUteach Candidacy.
		Upon completion of the culminating Apprentice Teaching field experience.
		students will be able to demonstrate mastery of STEM content in the
		discipline, proficiency with the independent development of content in a (5E
		Model) pedagogical sequence. Successful completion of the Apprentice
		Teaching and Seminar experience (or equivalency) is the final requirement
		for degree completion.
		After completing this program, students should be able to make effective use
		of the concepts of calculus and linear algebra and to carry out efficiently
		algebraic and analytic computations. Student learning outcomes are further
		evidenced by understanding and assessment of these concepts in a virtual
		(online) environment.
		Students will be able to carry out rigorous arguments in the context of real
		and complex analysis, abstract algebra, and probability. Student learning
		outcomes are further evidenced by understanding and successful assessment
		of these concepts and learning goals in a virtual (online) environment.
		Upon completion of the program, students will be be able to effectively
		communicate mathematical ideas using oral. written. and/or electronic
		media. The student learning outcomes are further evidenced by
		understanding and successful assessment of these concepts and learning
		goals.
		After completing this program, students should be able to use technological
		tools that are useful in mathematical research. The effective use of
		technology is further evidenced by each student's ability to satisfy learning
		goals in an virtual, online environment.
		Upon completion of the program, students will be able to think critically and
		apply multiple approaches to solving problems. The student learning
		outcomes are further evidenced by the successful assessment of this learning
		goal.
		Upon completion of this program, students will illustrate mathematical
		independence and have use open-ended inquiry to solve problems.

Program Description	Program Degree	Student Learning Outcomes
MATHEMATICS/COMPUTE	BS	Students will be proficient in at least one programming language and can
R SCIENCE		write, test, and debug software programs.
		Students will be able to apply existing algorithms and/or design new
		algorithms that are appropriate for solving a given problem.
		After completing this program, students should be able to approach
		problems in both mathematics and computer science from a variety of
		perspectives.
		Students will be able to apply mathematical concepts to solve problems in
		both the mathematical and computing disciplines.
		Students will be able to communicate effectively about concepts within both
		the mathematics and computer science disciplines.
MATHEMATICS/PHYSICS	BS	1: fundamental principles of mathematics and their ability to apply these
		principles in the solution of problems in calculus, algebra and specialized
		topics
		2: fundamental principles of physics and their ability to apply these principles
		to problems in classical mechanics, electromagnetism, optics and wave
		phenomena, thermodynamics and statistical mechanics, quantum
		mechanics, atomic nuclear and particles physics, special relativity and
		specialized topics
		3: laboratory skills for the analysis of physical systems, including data and
		error analysis, electronics, instrumentation, radiation detection, counting
		statistics, interaction of charged particles with matter, lasers and optical
		interferometers, dimensional analysis, fundamental applications of
		probability and statistics
		4: the ability to process and evaluate effectively both theoretical and real-life
		quantitative data.
		5: communication using oral, written, or electronic media, and have the
		teamwork and leadership skills needed to recognize, isolate, and solve
		mathematical problems.
NATURAL SCIENCES	ВА	By the end of the degree, each natural science BA major will complete and
		pass 123 total credits, where they satisfy university and college requirements
		and 60-69 major courses outlined on the major sheet. This includes 2 upper-
		level liberal arts courses and a second level of a foreign language. This will
		demonstrate a strong balance of knowledge across all natural sciences and
		the liberal arts.
		By the end of the SCTC 4396 semester, each natural science BA major will
		create a research project from start to finish, including data analysis, to
		demonstrate an appropriate level of integrated knowledge of statistical
		concepts and skill with regards to research methods.
		By the end of the degree, each natural science BA major will complete and
		pass a comprehensive exam which will demonstrate the students
		comprehension as a whole, across all of the natural science fields.
NATURAL SCIENCES	BS	By the end of the SCTC 4396 semester, each natural science BA major will
		create a research project from start to finish, including data analysis, to
		demonstrate an appropriate level of integrated knowledge of statistical
		concepts and skill with regards to research methods.
		By the end of the degree, each natural science BS major will complete and
		pass a comprehensive exam which will demonstrate the students
		comprehension as a whole, across all of the natural science fields.

Program Description	Program Degree	Student Learning Outcomes
NATURAL SCIENCES (CONT'D)	BS (CONT'D)	By the end of the degree, each natural science BS major will complete and pass 123 total credits, where they satisfy university and college requirements and 74-85 major courses outlined on the major sheet. This will demonstrate a strong foundation of knowledge across all natural sciences disciplines.
NEUROSCIENCE: CELLULAR AND MOLECULAR	BS	1. Thoroughly understand of the principal levels of organization of living organisms
		2. Understand the biochemical and biophysical principles that underlie living organisms
		3. comprehend principles that govern interaction between and within cells, tissues and organisms
		4. critically evaluate experimental data and be familiar with laboratory procedures, particularly those related to Neuroscience
		5. communicate using oral, written, or electronic media, and understand attribution and acknowledgement of sources
PHARMACEUTICAL SCIENCES	BS	Students will have a deep understanding of how the basic sciences integrate into the field of pharmaceutical science.
PHYSICS	ВА	 understand fundamental principles of physics and apply these principles to problems in classical mechanics, electromagnetism, optics and wave phenomena, thermodynamics and statistical mechanics, quantum mechanics, atomic physics, special relativity, and specialized topics have appropriate laboratory skills for the analysis of physical systems. These include data and error analysis, instrumentation, radiation detection, counting statistics, and dimensional analysis use mathematical methods to study physical models. Such mathematical methods include single and multivariate calculus, coordinate systems (rectangular, cylindrical, and spherical), vector algebra and vector differential operators, Fourier series, ordinary and partial differential equations, boundary value problems, matrices and determinants, and functions of complex variables
		 4: have appropriate oral and written communication skills that enable students to explain their work to people from a wide variety of backgrounds. 5: have a basic understanding of elementary principles of other natural
		science such as astronomy, chemistry, biology or geology and their ability to apply these principles in the solution of problems
PHYSICS	BS	1: understand fundamental principles of physics and apply these principles to problems in classical mechanics, electromagnetism, optics and wave phenomena, thermodynamics and statistical mechanics, quantum mechanics, atomic physics, special relativity, and specialized topics 2: have appropriate laboratory skills for the analysis of physical systems. These include data and error analysis, instrumentation, radiation detection, counting statistics, and dimensional applysic

Program Description	Program Degree	Student Learning Outcomes
PHYSICS (CONT'D)	BS (CONT'D)	3: use mathematical methods to study physical models. Such mathematical methods include single and multivariate calculus, coordinate systems (rectangular, cylindrical, and spherical), vector algebra and vector differential operators, Fourier series, ordinary and partial differential equations, boundary value problems, matrices and determinants, and functions of complex variables
		 5: have a basic understanding of elementary principles of other natural science such as astronomy, chemistry, biology or geology and their ability to apply these principles in the solution of problems
PHYSICS	MS	The fundamental physics of the core courses Analytical Mechanics, Mathematical Physics, Quantum Mechanics I & II, Electromagnetic Theory, Statistical Mechanics, and Physics Research & Ethics. solving physical and mathematical problems, and other problems whose
		solution requires logic, knowledge, creativity, and self-discipline creation of new knowledge in a thesis or research article advanced fundamental physics, as taught in the Solid State Physics, Nuclear & Elementary Particle Physics courses, and advanced elective courses like Many- Electron Theory and Advanced Topics in Nuclear & Elementary Particle Physics
PHYSICS	PHD	Fundamental physics as taught in the core courses Analytical Mechanics, Mathematical Physics, Quantum Mechanics I & II, Electromagnetic Theory, Statistical Mechanics, and Physics Research & Ethics. Nearly all our students have already had an introduction to most of these subjects as undergraduates, but at the graduate level they acquire a deeper, broader, and more abstract understanding of the fundamental principles of physics.
		Solving physical or mathematical problems, or other problems whose solution requires logic, knowledge, creativity, and self-discipline creating new knowledge via a dissertation or research journal article Advanced fundamental physics as taught in the Solid state Physics and Nuclear and Elementary Particle Physics courses, or in advanced elective courses like Many-Electron Physics, Advanced Nuclear and Elementary Particle Physics and Quantum Field Theory. Students take these courses in their second year, when they are also sampling or starting graduate research.
PHYSICS WITH TEACHING	BS	Students will be able to understand fundamental principles of physics and apply these principles to the following Core Competencies: classical mechanics, electromagnetism, optics and wave phenomena, thermodynamics and statistical mechanics, quantum mechanics, atomic physics, special relativity, and specialized topics. Students will demonstrate the appropriate laboratory skills for the analysis of physical systems. These include data and error analysis, instrumentation, radiation detection, counting statistics, and dimensional analysis.

College of Science and Technology Academic Program Student Learning Outcomes

Program Description	Program Degree	Student Learning Outcomes
Program Description PHYSICS WITH TEACHING (CONT'D)	BS (CONT'D)	Student Learning Outcomes Students will be able to use use mathematical methods to study physical models. Relative to the cross-curricular relationship math has to understanding the Physics Core Competencies, these mathematical methods include the following: single and multivariate calculus, coordinate systems (rectangular, cylindrical, and spherical), vector algebra and vector differential operators, Fourier series, ordinary and partial differential equations, boundary value problems, matrices and determinants, and functions of complex variables. Students will be able to exhibit effective oral and written communications skills within the context of explaining their work to a broad and diverse audience. For the 2020-2021 Academic Year, students will also be able to demonstrate effective use of technology/technology sources to grasp course concepts and learning goals in a virtual (online) platform. This student learning outcome (SLO) is exhibited across the curriculum. Students will have a basic understanding of STEM principles across the sciences. This will include the breadth of Natural Sciences, chemistry, biology and geology. The student learning outcome(s) will also reflect their ability to apply these principles to solve real-world problems. By the end of the semester, each TUteach major will have developed and implemented a full time semester of discipline-specific lessons in a local 7-12 classroom, with the assistance of a Mentor teacher and course Instructor. Upon completion of the culminating Apprentice Teaching field experience, students will be able to demonstrate mastery of STEM content in the discipline, proficiency with the independent development of curriculum and
		the delivery of content in a (5E Model) Instructional sequence. Successful completion of the Apprentice Teaching and seminar experience (or equivalency) is the final requirement to degree completion. Upon completion of the culminating Apprentice Teaching field experience, students will be able to demonstrate mastery of STEM content in the discipline, proficiency with the independent development of curriculum and the effective delivery of content in a (5E Model) instructional sequence. Successful completion of the Apprentice Teaching and Seminar experience (or equivalency) is the final requirement for degree completion.
SCIENTIFIC WRITING	GRAD	Knowledge of the basic principles and practices of the different genres of Scientific Writing An understanding of the process of research and development in academia and industry An understanding of, and the expertise to effectively use the wide variety of funding sources for academic and non-profit/not-for-profit projects Increased skills in editing, storytelling, research, and analysis Broadened knowledge of career opportunities in Scientific Writing
SCIENTIFIC WRITING	PSM	Knowledge of the basic principles and practices of the different genres of Scientific Writing An understanding of the process of research and development in academia and industry Increased skills in editing, storytelling, research, and analysis

Program Description	Program Degree	Student Learning Outcomes
SCIENTIFIC WRITING (CONT'D)	PSM (CONT'D)	Broadened knowledge of career opportunities in Scientific Writing
		An understanding of, and the expertise to effectively use the wide variety of funding sources for academic and non-profit/not-for-profit projects